1. You start an account with \$500 and an interest rate of 6% compounded yearly. How much is in the account after 3 years?

 $Y = 500 (1+0.06)^3$ $Y = 500 (1.06)^3$ X = 4595.51 loyend

2. From 2000 - 2010 a city had a 2.5% annual decrease in population. Write an Equation that represents this information.

V= 2,950,000 (1-0,025)

(1-2,950,000 (0.975)

3. From 2000 - 2010 a city had a 2.5% annual decrease in population. If the city had 2,950,000 people in 2000, determine the city's population in 2008. 84%

V= 2409122.82 V= 2,409,122

Round Down Because it's population 4. You buy a car for \$8000 that depreciates at a rate of 11% a year. How much is the care worth after 5 years?

5. You start an account with \$2500 and an interest rate of 6.5% compounded yearly. How much is in the account after 7 years?

6. A newly hatched channel catfish typically weighs about 0.06 gram. During the first 6 weeks of life, its weight increases by about 10% each day. Write a function to model the situation. How much does the catfish weigh after 6 weeks?

Compound Formula
YEal It in nt

 $V = 0.06 (1 + \frac{1}{7})^{7(6)}$ $V = 0.06 (1.014)^{42}$ V = 0.11 grams

Express the equation in exponential form.

7.
$$\log_5 25 = 2$$

Express the equation in exponential form.

 $8. \log_8 2 = 1/3$

Express the equation in logarithmic form.

$$9.5^{3} = 125$$

$$\log_{5} / 25 = 3$$

Express the equation in logarithmic form.

$$10.8^{-1} = 1/8$$

Evaluate the expression.

11. log₆ 36

10934 109.6 Evaluate the expression.

12. log₉ 81

Evaluate the expression.

13. log₅ 0.2

Use the definition of the logarithmic function to find x.

14.
$$log_5 x = 4$$

Use the definition of the logarithmic function to find \boldsymbol{x} .

15.
$$\log_4 x = 2$$

Use the definition of the logarithmic function to find \times .

16. $\log_{\times} 25 = 2$

17. What is the Change of Base Formula for logab?

18. It takes Jill 2 hours to blow the leaves off of her yard. It takes Riley an hour and a half to blow the leaves off of his yard. How long would it take for both of them to blow the leaves off of their yard?

LCD=lex
$$\frac{1}{2} \cdot \frac{3x}{3x} > \frac{3x}{6x}$$

$$\frac{1}{1.5} \cdot \frac{4x}{4x} = \frac{4x}{6x}$$

$$\frac{3x}{6x} + \frac{4x}{6x} = \frac{6}{6x}$$

$$\frac{1}{1.5} \cdot \frac{4x}{4x} = \frac{6}{6x}$$

$$\frac{3x + 4x}{6x} = \frac{6}{6x}$$

$$\frac{3x + 4x}{6x} = \frac{6}{6x}$$

$$\frac{3x + 4x}{6x} = \frac{6}{6x}$$

$$\frac{7x}{6x} = \frac{6}{6x}$$

$$\frac{7x}{6x} = \frac{6}{6x}$$

$$\frac{7x}{6x} = \frac{6}{6x}$$

19. Write an exponential equation that passes through the points (0, 25) and (1, 260)

$$Y = a \cdot b^{x}$$
 $Y = 25 \cdot b^{x}$
 $260 = \frac{35 \cdot b^{2}}{25}$
 $10.4 = \frac{1}{2}$
 $10.4 = \frac{1}{2}$
 $10.4 = \frac{1}{2}$

20. Write an exponential equation that passes through the points (0, 2) and (2, 65)

21. If x varies inversely as y and x = 8 when y = 15, find x when y is 10.

22. Compare/Contrast: You want to put your savings into a bank account that will provide you with the most interest per year. You have saved up a total of \$2,000 and you have narrowed your banks down to two choices. Tell which bank is better for your money:

(Hint: Find out which bank gives you the most interest)

Bank 1: offers you 0.7% interest, compounded monthly

Bank 2: offers you 0.65%, compounded quarterly.

Bank 1

$$A = a(1+\frac{r}{n})^{n+}$$
 $A = 2000(1+\frac{0.007}{12})^{12(4)}$
 $A = 2000(1,0006)^{12(4)}$
 $A = 2014.45$

Better

BANK

$$A = a(1+\frac{1}{4})^{+}$$

$$A = 2000 (1+\frac{0.0065}{4})^{4(6)}$$

$$A = 2000 (1.00/6)^{4(6)}$$

$$A = 20/2.83$$

23. An account was opened with \$4000 and it is put into an account paying 2.25% interest compounded quarterly. How much should be in the account at the end of 3 years?

$$A = 4000 (1 + \frac{0225}{4})^{4(3)}$$

$$A = 4000 (1.005625)^{12}$$

$$A = 44278.51$$

24. If you invest \$10,000 in an account paying 8% annual interest compounded monthly, how much should be in the account at the end of 5 years?

$$A = a(1+\frac{r}{n})^{n+1}$$

$$A = a(1+\frac{r}{n})^{n+1}$$

$$A = 10,000(1+\frac{00}{12})^{12(5)}$$

$$A = 10,000(1.007)^{40}$$

$$A = 15,197.34$$

25. Solve for x:

$$\frac{4}{n^2} = \frac{5}{n} - \frac{1}{n^2}$$

$$\frac{5}{n} \cdot \frac{5}{n} = \frac{5}{n^2}$$

$$\frac{4}{n^2} = \frac{5n}{n^2} - \frac{1}{n^2}$$

26. Solve for x:
$$\frac{3}{x} + 2 = \frac{1}{5}$$

$$\frac{2}{1} = \frac{57}{57} = \frac{10x}{57}$$

$$\frac{15}{5x} + \frac{10x}{5x} = \frac{x}{5x}$$

$$\left(-\frac{5}{3}=x\right)$$

27. Solve the following equation

$$3^{x-4} = 9^{x+6}$$

$$3^{x-4} = 3^{2(x+u)}$$

$$3^{x-4} = 2^{2(x+u)}$$

$$3^{x-4} = 2^{2(x+u)}$$

$$-4 = 2^{x+1}$$

$$-4 = x + 12$$

28. Solve the following equation

$$8^{x} = 4^{x-1}$$

$$2^{3x} = 2(x-1)$$

$$3x = 2x - 2$$

$$(x = -2)$$

29. The value of a dump truck can be modeled by the function $V(t) = 35,000(.76)^{t}$ where t is the number of years since the car was purchased. To the nearest tenth of a percent, what was the *monthly* rate of depreciation?

$$\frac{124}{12} = 0.02$$

$$20/0$$

30. If a snowmobile is purchased for \$14,350 and depreciates at a rate of 15% per year, about how long will it take for the snowmobile to be worth half of its initial value?

$$Y = 14350(1-0.15)^{t}$$

 $Y = 14,350(.85)^{t}$